
Chemosphere 288 (2022) 132547

Available online 12 October 2021
0045-6535/© 2021 Elsevier Ltd. All rights reserved.

Continuous and near real-time measurements of gaseous elemental mercury 
(GEM) from an Unmanned Aerial Vehicle: A new approach to investigate 
the 3D distribution of GEM in the lower atmosphere 

J. Cabassi a,*, M. Lazzaroni a,b, L. Giannini a, D. Mariottini c, B. Nisi a, D. Rappuoli d,e, 
O. Vaselli a,b 

a CNR-IGG Institute of Geosciences and Earth Resources, Via La Pira 4, 50121, Florence, Italy 
b Department of Earth Sciences, University of Florence, Via La Pira 4, 50121, Florence, Italy 
c Drone Arezzo S.r.l., Via Fratelli Lumiere 19, 52100, Arezzo, Italy 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• First attempt to measure GEM in near 
real-time with a Lumex RA-915 M on an 
UAV. 

• Test in selected sites of mining and 
urban zones of Abbadia San Salvatore 
(Italy). 

• The method shed light on GEM spatial 
distribution and concentration 
variability. 

• 3D dot-maps allowed to verify whether 
the guideline concentrations were 
exceeded. 

• GEM contents achieved the highest 
concentrations above the old furnaces 
facilities.  
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A B S T R A C T   

We present the first real attempt to directly and continuously measure GEM through a Lumex RA-915 M, 
designed for real-time detection of mercury vapor, mounted on an UAV (Unmanned Aerial Vehicle, namely a 
heavy-lift octocopter), inside and outside the former Hg-mining area of Abbadia San Salvatore (Mt. Amiata, 
Italy), known as a GEM source. We tested the effectiveness of the UAV-Lumex combination at different heights in 
selected sites pertaining to both mining facilities and surrounding urban zones, shedding light on the GEM spatial 
distribution and concentration variability. The Lumex great sensitivity and the octocopter optimal versatility and 
maneuverability, both horizontally and vertically, allowed to depict the GEM distribution in the atmosphere up 
to 60 m above the ground. The acquisition system was further optimized by: i) synchronizing Lumex and UAV 
GPS data by means of a stand-alone GPS that was previously synchronized with Lumex; ii) using a vertical 
sampling tube (1.20 m high) connected to the Lumex inlet to overcome the rotors strong airflows and turbulence 
that would have affected GEM measurements; iii) supplying the octocopter with batteries for power supply to 

* Corresponding author. 
E-mail address: jacopo.cabassi@igg.cnr.it (J. Cabassi).  

Contents lists available at ScienceDirect 

Chemosphere 

journal homepage: www.elsevier.com/locate/chemosphere 

https://doi.org/10.1016/j.chemosphere.2021.132547 
Received 19 August 2021; Received in revised form 28 September 2021; Accepted 10 October 2021   

mailto:jacopo.cabassi@igg.cnr.it
www.sciencedirect.com/science/journal/00456535
https://www.elsevier.com/locate/chemosphere
https://doi.org/10.1016/j.chemosphere.2021.132547
https://doi.org/10.1016/j.chemosphere.2021.132547
https://doi.org/10.1016/j.chemosphere.2021.132547
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemosphere.2021.132547&domain=pdf


Chemosphere 288 (2022) 132547

2

avoid the release of exhaust gases; iv) taking the advantage of the UAV ability to land in small spaces and stop at 
selected altitudes. 

The resulting dot-map graphical representations, providing a realistic 3D picture of GEM vertical profiling 
during the flights in near real-time, were useful to verify whether the guideline concentrations indicated by 
competent authorities were exceeded. The results showed that the GEM concentrations in the urban area, located 
a few hundred meters from the mining structures, and close to already reclaimed areas remained at relatively low 
values. Contrarily, GEM contents showed significant variations and the highest concentrations above the facil-
ities containing the old furnaces, where increasing GEM concentrations were recorded at decreasing heights or 
downwind.   

1. Introduction 

Air quality assessment and emission and distribution of pollutants in 
the atmosphere are a key issues of the European and global environ-
mental policies, in order to both protect human health and environment 
from adverse effects by contaminants and develop concrete actions to 
support a modern ecological and green transition (WHO, 2016; EEA, 
2020). Mercury is a toxic and noxious element for humans and ecosys-
tems and gaseous elemental mercury (GEM or Hg0) is considered a 
global and dangerous air pollutant due to its volatility and chemical 
inertia (WHO, 2000, 2007; Fitzgerald and Lamborg, 2007; Driscoll et al., 
2013). The residence time of GEM in the atmosphere has indeed been 
estimated to be comprised between 6 and 24 months (Schroeder and 
Munthe, 1998; Lamborg et al., 2002). GEM is released by a variety of 
natural (e.g. Pyle and Mather, 2003; Engle et al., 2006; Bagnato et al., 
2011, 2014; Tassi et al., 2016; Gagliano et al., 2016, 2019; Venturi et al., 
2019; Edwards et al., 2020; Cabassi et al., 2021) and anthropogenic 
sources (e.g. Eckley and Branfireun, 2008; Pacyna et al., 2010; Pirrone 
et al., 2010; Huang et al., 2011; Streets et al., 2011; Acquavita et al., 
2017; Sundseth et al., 2017; Tao et al., 2017; Cabassi et al., 2020). 
Contamination by mining and smelting activities where cinnabar 
(HgS)-rich ore deposits were converted to liquid mercury is known to be 
significantly high (e.g. Ferrara et al., 1998a; Fantozzi et al., 2013; 
Higueras et al., 2013, 2014; Barago et al., 2020; Esbrí et al., 2020; 
Floreani et al., 2020). Research and monitoring programs are presently 
aimed at carrying out inventory and controlling and minimizing the 
emissions from all relevant sources, enforcing the knowledge on the 
dispersion mechanisms of mercury in the atmosphere, as established by 
the UN Minamata Convention on Mercury, which came into force in 
August 2017 (UNEP, 2013). The Minamata Convention is currently 
implemented by dedicated actions, as those promoted by the Global 
Mercury Partnership (Bank et al., 2014) and its priorities for action (e.g. 
mercury air transport and fate research area; Mason and Pirrone, 2009). 
In this framework, both CNR-IGG and the Department of Earth Sciences 
of Florence actively participate as members. For this purpose, investi-
gating and proposing new methods, approaches and/or protocols of 
measurement of gaseous mercury emissions become crucial for moni-
toring the presence of mercury pollution sources as well as their effects 
on the environment. 

Unmanned Aerial Vehicles (UAVs), with their different shapes and 
sizes (Villa et al., 2016a,b; Hassanalian and Abdelkefi, 2017; Roch, 
2020), currently represent the new frontier of monitoring environ-
mental and air pollutants, since they can be used in many different 
contexts, ranging from major cities and urban regions (e.g. Gallacher, 
2016a, 2016b; Lambey and Prasad, 2021 and references therein) to 
active degassing volcanoes and hydrothermal areas (Astuti et al., 2008; 
Stix et al., 2018; Liu et al., 2019; Mandon et al., 2019; Galle et al., 2021; 
Tamburello et al., 2021). UAVs are indeed suitable for different purposes 
(Burgués and Marco, 2020; Lambey and Prasad, 2021), such as field 
determination of: i) multi-pollutants (Aurell et al., 2017; Qiu et al., 
2017), ii) sampling and/or measurements of specific gaseous species 
(McGonigle et al., 2008; Rossi et al., 2014; Chang et al., 2016; Rossi and 
Brunelli, 2017; Ruiz-Jimenez et al., 2019; Rutkauskas et al., 2019), or 
iii) detection of natural or anthropogenic pollutant plumes and 

modelling (Neumann et al., 2013; Barchyn et al., 2019). UAVs allow to 
mount devices for direct gas sampling or measurement in air and they 
are relatively low-cost and characterized by high sampling resolution, 
repeatability and flexibility and efficiency in 3D monitoring although 
they have so far limited flight time. Consequently, UAVs are preferable 
over other air quality monitoring platforms especially in dangerous or 
inaccessible environments (Villa et al., 2016a; Lambey and Prasad, 
2021). 

As far as gaseous mercury is concerned, a first application using a 
UAV was only recently made (Black et al., 2018), since continuous 
monitoring is generally performed at ground level and at fixed points (e. 
g. Wängberg et al., 2016) or by moving along pre-defined transects with 
portable devices (e.g. Vaselli et al., 2013; Cabassi et al., 2017), whereas 
measurements in the atmosphere are usually performed via airships 
(Slemr et al., 2009; Deeds et al., 2013). Black et al. (2018) collected 
gaseous mercury from anthropogenic emissions on gold-coated quartz 
cartridges allocated on a quadcopter, which was then analyzed via cold 
vapor atomic fluorescence spectrometry. To the best of our knowledge, 
direct, continuous and near real-time measurement are not so far re-
ported by mounting a portable instrumentation for GEM determination 
housed in an UAV. Accordingly, this study was aimed at obtaining the 
very first measurements of GEM carried out up to an altitude of about 60 
m above the ground by coupling a Lumex RA-915 M Mercury Analyzer, 
designed for real-time detection and monitoring of mercury vapor, to a 
heavy-lift octocopter. The GEM data were acquired via pre-established 
transects crosscutting the former Hg mining area of Abbadia San Sal-
vatore (Mt. Amiata, central Italy), which is known to be an important 
GEM source (e.g. Bacci et al., 1994; Ferrara et al., 1998b; Vaselli et al., 
2013; McLagan et al., 2019). The aim is to evaluate the 3D spatial dis-
tribution of GEM at different heights and testing the effectiveness of the 
UAV-Lumex combination. Consequently, UAV flights were carried out 
close to the mining facilities, while others were performed to verify 
whether Abbadia San Salvatore was impacted by the GEM released from 
the mining site, the urban areas being located a couple of hundred 
meters away. 

2. The study area and the UAV flights 

The study area is located inside the town of Abbadia San Salvatore 
(Fig. 1a and b), i.e. the most important site of cinnabar exploitation and 
mercury production of the Mt. Amiata Hg district (e.g. Vaselli et al., 
2013 and references therein). Numerous studies (e.g. Gray et al., 2014; 
Rimondi et al., 2014, 2015, 2020; Vaselli et al., 2015, 2021; Magi et al., 
2018; Lazzaroni et al., 2020; Pribil et al., 2020) highlighted that the Hg 
contamination and dispersion affected all the environmental compart-
ments, i.e. geosphere, hydrosphere, pedosphere and atmosphere. Ac-
cording to the mining reports, at least 100,000 tons of liquid mercury 
were produced and about 10,000 tons of gaseous mercury were 
dispersed in the atmosphere (Ferrara et al., 1998b; Vaselli et al., 2017). 
The mining complex covers about 65 ha and hosts abandoned edifices, 
consisting of furnaces, driers, condensers, laboratories and technical and 
workers’ buildings (Fig. 1b). Currently, remediation activities are in 
progress and aimed at achieving indoor and outdoor GEM concentra-
tions of <500 and < 300 ng m− 3, respectively (Regional Decree n◦ 1447, 
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November 23, 1998; Vaselli et al., 2019). The most Hg-contaminated 
sites are associated with the edifices hosting the Gould and Nesa fur-
naces and condensers (up to >50,000 ng m− 3; Vaselli et al., 2017, 2019). 

GEM anomalies were distributed outside the former mining area 
(Vaselli et al., 2013; McLagan et al., 2019). Consequently, the flights of 
the UAV-Lumex were planned to cover both the former mining site 
where the HgS-rich ore material was stored and liquid Hg was produced 
as well as the surrounding areas. In August 2020, six distinct flights, 
whose duration was of about <15 min each, were carried out and the 
takes offs were from:  

● “Stadio”: the local municipal stadium located inside Abbadia San 
Salvatore (Fig. 1c);  

● “Altone”: recreational and sport center in the western part of 
Abbadia San Salvatore (Fig. 1d);  

● “Laghetto Verde”: a small lake NW of the mining area (Fig. 1e);  
● “Pozzo Garibaldi”: Garibaldi mine shaft, positioned in the northern 

portion of the mining area, was used by the miners to reach the 
different levels (down to − 400 m) in order to exploit the Hg-ore 
deposits, extract the material and manage and maintain the mining 
equipment (Fig. 1f);  

● “Asciugatoi Vecchi”: the old dryers situated in the central part of the 
mining area (Fig. 1g);  

● “Forni”: the edifices hosting the Gould and Nesa furnaces (Fig. 1h). 

From each site, the UAV-Lumex was travelling along by following 
predetermined routes. 

3. Materials and methods 

The UAV selected for the atmospheric surveys is a Hammer X8B, a 
heavy-lift coaxial octocopter originally designed for the film industry 

(Fig. 2a, b, c). Its versatility makes it a suitable choice for such activities 
since a high degree of precision as well as operation safety during 
overflight are required. The X8B can carry payloads up to 20 kg. It has a 
full carbon fiber airframe measuring 140 cm diagonally (motor to 
motor), which consists of a central rigid core structure, where flight 
controller, batteries and payload are located, and four folding arms 
where the motors are mounted (Fig. 2b). The aircraft eight propulsion 
units (each consisting of a motor and propeller) are arranged in coaxial 
X8 configuration with four arms carrying two contra-rotating units each. 
The use of multiple motors allows the UAV to maintain stable fight even 
in the unlikely event of a motor failure. While it is less efficient than a 
“flat” (not coaxial) layout, a notable advantage of the X8 design, when 
compared to a flat 8, is that with 4 as opposed to 8 arms, larger motors 
and propellers can be fitted for increased lifting capacity without greatly 
increasing the size of the aircraft. A further benefit of a coaxial layout is 
that it greatly reduces exposed propeller disk area when compared to an 
equivalent flat motor layout, making the aircraft far less sensitive to 
wind conditions. The motors are powered by four 14,000 mAh 6S 
(22.2V) Lithium Polymer (LiPo) batteries arranged in two separate 
14,000 mAh 12S (44.4V) banks joined in parallel for a total of 28,000 
mAh capacity. The setup ensures the aircraft to have enough reserve 
power to make a safe landing even in the event of battery malfunc-
tioning. The aircraft is controlled via a DJI A3 Pro flight controller and a 
DJI Lightbridge 2 control link. The A3 Pro is a triple redundancy flight 
controller with three GPS units, three magnetometers, and three IMUs 
working together, so that a reliable backup is always available in the 
event of a failure. The Lightbridge 2 Control Link allows the use of a 
ground station running the DJI GO app, which provides full real-time 
telemetry data for aircraft position, altitude and speed, as well as 
acting as a flight data recorder. The use of real-time positioning data 
with satellite map overlay allows precise positioning of the aircraft over 
the areas to be investigated. 

Fig. 1. Location of Abbadia San Salvatore (Mt. Amiata, central Italy) (a) and the former Hg mining area (b). The flight routes carried out by the UAV-Lumex pair at 
the selected six sites are also reported: “Stadio” (c), “Altone” (d), “Laghetto Verde” (e), “Pozzo Garibaldi” (f), “Asciugatoi Vecchi” (g) and “Forni” (h). See text for 
additional information. 
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The main technical UAS (Unmanned Aircraft System, i.e. an un-
manned aircraft and the equipment to control it remotely; EU, 2019) 
characteristics are, as follows:  

● Airframe: Hammer X8B  
● Motors: 8 T-Motor MN 701-S  
● Motor Controllers: 8 T-Motor ALPHA 60A HV  
● Propellers: 8 T-Motor 26.2X8.5  
● Batteries: 4 Tattu 14000 6s (22.2v) 24C  
● Flight Controller: DJI A3 PRO  
● Control Link: DJI Lightbridge 2  
● Ground Station: iPad Pro running DJI GO 

The Lumex RA-915 M Mercury Analyzer is based on differential 
atomic absorption spectrometry using high-frequency modulation of 
light polarization (ZAAS-HFM) (Sholupov et al., 2004) and is able to 
continuously measure GEM concentrations (range: 2:50,000 ng m− 3) in 
real-time and at high frequency (up to 1 s, as in the case of this work). 
The accuracy of the method is 20% (Sholupov and Ganeyev, 1995). A 
zero correction system continuously checks the baseline during sam-
pling, while a zero check of about 40 s is performed at the beginning and 
at the end of each measurement session by using an internal calibration 
cell. The Hg device was fitted underneath the UAV (Fig. 2a) and custom 
designed parts, 3D printed in PLA, were used to mount the sampling tube 
in a vertical configuration 1.2 m above the body of the aircraft. This 
installation was chosen to minimize the potential risk of false readings 
due to sampling air disturbance by the aircraft. Additionally, a stand-
alone GPS unit (Fig. 2a), synchronized with the Lumex at the same data 
acquisition frequency, was mounted on the aircraft as a yardstick to 
temporally compare the Lumex measurements and provide a backup for 
the GPS data from the Ground Station. 

Great care was taken during the flights to minimize as much as 
possible the risk of producing unreliable measurements in the case the 
UAV-Lumex pair was overlapping air portions where the unmanned 
vehicle was previously passed and turbulence developed. This was 
achieved by controlling the UAV in a way that it was flying diagonally, i. 
e. oppositely to the vertical ascent and descent profiles. The 

measurements were performed every 10 m increments between 10 m 
and 60 m above ground level, in some cases spending a minimum of 30 s 
at each altitude to ensure representativeness, or by flying an ascent/ 
descent never exceeding 1 m s− 1 and 5 m s− 1 vertical and horizontal 
speed, respectively. In some cases, the GEM data were acquired at fixed 
altitudes while moving across the areas of interest. When the measure-
ment flights were concluded, the flight data from the Ground Station 
were coupled with those from the Lumex and the standalone GPS. 

In the Supplementary Material, two videos show the UAV-Lumex 
pair flying over the edifices hosting the Gould and Nesa furnaces 
(“Forni” site, Video 1) and the soft landing of the UAV-Lumex pair after 
measuring GEM at “Altone” site (Video 2). 

Supplementary video related to this article can be found at 
https://doi.org/10.1016/j.chemosphere.2021.132547 

4. Results 

The number of measurements (n) and the GEM data of the six surveys 
are summarized in Table 1, along with the geographical coordinates of 
the sites and the data of altitude (in m) and flight time (CET: Central 
European Time) registered by the UAS. The meteorological parameters 
(temperature in ◦C, wind direction in ◦, wind speed in m sec− 1 and 
humidity in %) refer to the local ground weather recorded by a weather 
website that interfaces with the flights records. All data can be accessed 
directly from the drone management portal owned by ©Airdata UAV, 
Inc. During the flights, wind direction was between 58 and 75◦

(approximately from ENE) with a wind speed up to 1.8 m s− 1, while air 
temperature and humidity ranged from 27.9 to 31.1 ◦C and from 20 to 
30%, respectively, in relation with the flight time. The minimum alti-
tude varied from 828 m (“Stadio”) to 897 m (“Laghetto Verde” and 
“Pozzo Garibaldi”), the maximum from 883 m (“Stadio”) to 962 m 
(“Laghetto Verde”), whilst the mean altitude value varied between 865 
and 933 m. The GEM concentrations during the flights from “Stadio”, 
“Altone”, “Laghetto Verde” and “Pozzo Garibaldi” did not show a sig-
nificant variability, being comprised between 18 and 33 ng m− 3 and 
having almost coincident geometric average, mean and median values 
(Table 1). On the contrary, with regard to the flights over and around the 

Fig. 2. The Hammer X8B heavy-lift coaxial octocopter coupled with Lumex that was equipped with a sampling tube and stand-alone GPS on-board (a–b). UAV- 
Lumex pair during the flight (c). See the text for further details. 
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“Asciugatoi Vecchi” and “Forni”, the GEM concentrations varied be-
tween 8.5 and 696 ng m− 3 and between 5.2 and 5009 ng m− 3, respec-
tively, thus exceeding as expected the outdoor limit value recommended 
by local regulations (300 ng m− 3; Regional Decree n◦ 1447, November 
23, 1998; Vaselli et al., 2019) and, for the “Forni” site, the guideline for 
inorganic mercury vapor of 1000 ng m− 3 as an annual average (WHO, 
2000). Accordingly, their median values (101 and 105 ng m− 3, respec-
tively) did not coincide with their geometric averages (81 and 120 ng 
m− 3, respectively). The GEM standard deviation values were from 1.3 
(“Stadio”) to 843 (“Forni”) ng m− 3 (Table 1). The data distribution of 
each site is shown in the box-plot charts of Fig. 3. 

5. Discussion 

Spatial atmospheric measurements are becoming essential for air 
pollution forecasting and monitoring (Gu et al., 2018), particularly in 
environments characterized by contaminants with relatively high vola-
tility and residence time in the atmosphere such as GEM. Fixed platforms 
for high frequency continuous measuring cannot correctly account for 
the spatial variability of gases (Gu et al., 2018). On the other hand, 
low-cost passive traps or samplers placed in multiple sites within a 
selected area are regarded as useful to understand the distribution of 
pollutants (e.g. McLagan et al., 2016, 2019). However, they cannot be 

able to recognized sudden or short-time events of contamination since 
they are exposed for relatively long-time (e.g. weeks) and consequently, 
they retrieve weighted average concentrations (e.g. Venturi et al., 
2016). Differently, UAVs combined with instrumentation or sensors for 
continuous measurements are the correct approach for the growing need 
to understand the 3D spatial distribution of atmospheric pollutants. 
They are indeed able to provide the contaminant near-surface vertical 
profiling over large or site-specific areas in near real-time (Gu et al., 
2018; Rutkauskas et al., 2019; Burgués and Marco, 2020; Lambey and 
Prasad, 2021). The UAV-Lumex pair used in this work allowed to acquire 
a 3D spatial distribution of GEM in the former Hg-mining facilities of 
Abbadia San Salvatore and surroundings, being able to instantaneously 
catch the presence of local anomalies and, moreover, when present, to 
follow and evaluate the Hg-dispersion halo. 

The approach applied during the UAV flights requires the correct 
synchronization of Lumex and UAV GPS data since the internal clocks of 
the two devices are working independently, being separate components 
(Gu et al., 2018). This issue was bypassed by synchronizing the 
stand-alone GPS and the Lumex. Consequently, each single value had its 
own corresponding georeferencing data. In Fig. 4 (a, b), an example 
(“Forni” site) of the acquired GPS data is reported and compared with 
those of the UAV, demonstrating that the two acquisitions overlap 
perfectly, i.e. the GEM data were synchronous with the UAV position 
data. During the monitoring surveys by rotary-wing vehicles, the rotors 
generate very strong airflows (Burgués and Marco, 2020) that affect the 

Table 1 
Geographic coordinates (UTM WGS84), number of measurements (n), minimum, maximum, geometric average, mean, median and standard deviation values of GEM 
(ng m− 3), minimum, maximum and mean values of altitude (m), temperature (◦C), wind direction (◦) and speed (m s− 1), humidity (%) and flight time (hh:mm) for the 
six selected sites. The flights date is August 10, 2020. See the text for further details.  

Site “Stadio” “Altone” “Laghetto Verde” “Pozzo Garibaldi” “Asciugatoi Vecchi” “Forni” 

UTM_E 718352 717734 717405 717401 717568 717625 
UTM_N 4751051 4750799 4751226 4751393 4751158 4751104 
n 268 510 457 290 116 725 
Min. GEM 23 19 21 18 8.5 5.2 
Max. GEM 30 30 33 30 696 5009 
Geom. Aver. GEM 27 26 24 20 81 120 
Mean GEM 27 26 25 20 135 491 
Median GEM 28 26 24 20 101 105 
St. Dev. GEM 1.3 2.0 2.1 1.6 141 843 
Min. Altitude 828 870 897 897 881 873 
Max. Altitude 883 924 962 950 931 934 
Mean Altitude 865 902 933 926 899 902 
Temperature 27.9 28.7 29.8 30.4 30.8 31.1 
Wind direction 75 71 66 63 61 58 
Wind speed 1.8 1.8 1.8 1.7 1.6 1.6 
Humidity 30 27 24 22 21 20 
Flight time 10:40 : 10:45 11:14 : 11:23 12:02 : 12:10 12:30 : 12:35 12:52 : 13:00 13:16 : 13:29  

Fig. 3. Box-plot chart of the measured GEM concentrations (in ng m− 3) in the 
selected six sites. 

Fig. 4. UAV (black lines) and stand-alone GPS (red lines) data at “Forni” site 
for UTM_E (a) and UTM_N (b) coordinates. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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air distribution around the UAV and consequently, the data acquired by 
the on-board sensor. This drawback was overcome through a vertical 
sampling tube connected to the Lumex inlet. Such a configuration, 
requiring the measurement to be carried out at 1.2 m above the aircraft, 
allows to avoid the so-called “downwash”, i.e. rotors vertical airflow 
affecting the air masses for several meters below the UAV and having 
worst effects especially across strong spatial gradients (Burgués and 
Marco, 2020 and references therein). Other important advantages of the 
UAV chosen for this study are: 1) the use of batteries for power supply, 
which avoid the release of exhaust gases from the engine (Black et al., 
2018) and 2) the drone ability to land in small spaces and stop at 
pre-defined altitudes, which proved to be fundamental in our case, being 
very close to the emission points of the former mining area (Burgués and 
Marco, 2020). 

The GEM dispersion was visualized by using dot-map graphics, i.e. a 
map based on selected concentrations intervals plotted with different 
colored circles (e.g. Cabassi et al., 2017). This simple representation 
allows to depict the GEM variation along the UAV flight transects. As 
shown in Fig. 5, the concentrations during the flights at “Stadio” 
(Fig. 5a), “Altone” (Fig. 5b), “Laghetto Verde” (Fig. 5c) and “Pozzo 
Garibaldi” (Fig. 5d) sites maintained at relatively low values and did not 
substantially change both horizontally and vertically. This result cor-
responds to the site-specific features, since the first two sites are located 
a few hundred meters from the former-mining area, while the second 
two sites have already undergone considerable remediation work, 
respectively. This also testifies that during the measurements the urban 
area of Abbadia San Salvatore was not affected by significantly high 
GEM concentrations although the measured values were recorded to be 
higher than those of background values for Mt. Amiata (3–5 ng m− 3; 
Ferrara et al., 1998b). On the other hand, the “Asciugatoi Vecchi” and 
“Forni” flights registered a large variability in terms of GEM concen-
trations, although in the first case a few minutes of incorrect Lumex data 
acquisition with respect to the zero check occurred, preventing a correct 
graphical representation of the mercury contents. In Fig. 6, the “Forni” 
dot-map highlights the GEM dispersion plume originated by the mining 
facilities mostly released from the edifices where the Gould and Nesa 

furnaces are hosted. In fact, the GEM concentrations were higher than 
those required for outdoor value (300 ng m− 3) and those reported in the 
guidelines for inorganic mercury vapor (1000 ng m− 3; WHO, 2000). In 
this area, as well as around the “Asciugatoi Vecchi” site, Vaselli et al. 
(2013, 2017) measured, at 150 cm from the ground, GEM contents be-
tween 5000 and 10,000 ng m− 3 and >10,000 ng m− 3 and related to the 
presence of calcines, Hg-rich untreated material and liquid Hg. The 
highest concentrations (even >2500 ng m− 3) measured by the 
UAV-Lumex pair were found (Fig. 6), as follows: 1) in close proximity to 
the ground, concordantly with an increase with decreasing height (e.g. 
McLagan et al., 2019, 2021) and 2) in the southeastern portion of the air 
route and at 30–40 m altitude, i.e. consistently with an upward migra-
tion of GEM along the wind direction (Table 1). Actually, air movement 
and spatial variation of gaseous mercury in a mining–metallurgical 
environment or in any contaminated site with multiple emissions and 
with major sources acting as a constant GEM supplier can principally be 
explained by dilution processes, as already pointed out by Esbrí et al. 
(2020) and McLagan et al. (2021). Furthermore, the choice to fly 
following diagonal trajectories, as well as to carry out measurements at 
fixed altitudes while moving across areas of interest, proved to be 
appropriated, allowing to identify large and sudden vertical GEM vari-
ations even at minimum distances. It is indeed worth noting that path 
planning and track design are pivotal for the successful completion of 
the flights and suitable environmental pollution detection by UAVs (De 
Filippis et al., 2012; Rohi et al., 2020). 

6. Conclusions 

The present study demonstrated for the very first time that direct, 
continuous and near real-time GEM measurements aboard an UAV 
allowed to recognize the air concentration variability between different 
sites and to identify sudden mercury changes around the emission 
sources. This was guaranteed by: i) the great sensitivity of the UAV- 
Lumex pair combination and the optimal versatility and maneuver-
ability in both horizontal and vertical dimensions, ii) the high degree of 
precision of the heavy-lift octocopter, as well as iii) Lumex and UAV GPS 

Fig. 5. 3D dot-maps of the GEM (in ng m− 3) measurements in air performed during the flights at “Stadio” (a), “Altone” (b), “Laghetto Verde” (c) and “Pozzo 
Garibaldi” (d) sites. A green color scale was used to depict the GEM concentrations. The black curves are the projection of the flight at the ground level. See the text 
for further details. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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synchronization and iv) the use of a vertical tube for air sampling and 
batteries for power supply. The resulting dot-map graphical represen-
tation provided a realistic 3D picture of GEM distribution during the 
UAV flight, able to verify whether guideline concentrations indicated by 
international, national or local authorities were exceeded. This kind of 
measurements is in fact becoming necessary, especially close to areas 
known to be contaminated and placed next to inhabited centers, as in the 
case of Abbadia San Salvatore and the former mining area, in order to 
undertake appropriate actions to mitigate the possible risk for the local 
community and to successfully implement the Minamata Convention by 
means of emerging investigation techniques for GEM atmospheric 
monitoring (Gustin et al., 2016). In particular, the results showed that 
the GEM concentrations in the urban area, as opposed to those near the 
old furnaces buildings, remained roughly stable at relatively low values 
during the flights. 

The presented instrumental approach is therefore able to overcome 
the limitations of both fixed measuring stations, which cannot take into 
account the GEM spatial variability, and passive samplers, which do not 
provide indications on concentration variations in short periods of time. 
The UAV-Lumex pair can further be improved and implemented by 
repeating the flights at different hours and days to account for the 
temporal evolution of the GEM three-dimensional spatial distribution, as 
shown by e.g. Vaselli et al. (2013), Esbrí et al. (2020) and McLagan et al. 
(2021) who recorded significant GEM variations between day and night. 
Additionally, the atmospheric conditions play a key role, as they are able 
to increase or decrease the GEM concentrations and their distribution. 
Furthermore, the UAS data acquisition accuracy and the experience of 
the UAV pilot can allow to standardize the flight operations, i.e. accu-
rately repeating the flight paths in different environmental conditions 
since there is the possibility of reprogramming the route based on pre-
viously acquired coordinates and altitudes. Finally, the expenses are 
relatively limited, since once the UAV and Lumex are purchased the 
costs can be easily amortized, i.e. only the maintenance of the two in-
struments is required. 
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